
CS106B
Winter 2020

Handout 29
March 6, 2020

Huffman Encoding and Data Compression

Handout by Julie Zelenski with minor edits by Keith Schwarz

In the early 1980s, personal computers had hard disks that were no larger than 10MB; today, the small-
est of disks are still measured in tens of gigabytes. Even though hard drives are getting bigger, the files
we want to store (funny pictures of cats, videos, music and so on) seem to keep pace with that growth,
which makes even today's gargantuan disk seem too small to hold everything.

One technique to use our storage more effectively is to compress the files. By taking advantage of redun-
dancy or patterns, we may be able to “abbreviate” the contents in such a way to take up less space yet
maintain the ability to reconstruct a full version of the original when needed. Such compression could be
useful when trying to cram more things on a disk or to shorten the time needed to copy/send a file over a
network.

There are compression algorithms that you may already have heard of. Some compression formats, such
as JPEG, MPEG, or MP3, are specifically designed to handle a particular type of data file. They tend to
take advantage of known features of that type of data (such as the propensity for pixels in an image to
be same or similar colors to their neighbors) to compress it. Other tools such as compress, zip, or pack
and programs like StuffIt or ZipIt can be used to compress any sort of file. These algorithms have no a
priori expectations and usually rely on studying the particular data file contents to find redundancy and
patterns that allow for compression.

Some of the compression algorithms (e.g. JPEG, MPEG) are lossy—decompressing the compressed re-
sult doesn't recreate a perfect copy of the original. Such an algorithm compresses by "summarizing" the
data. The summary retains the general structure while discarding the more minute details. For sound,
video, and images, this imprecision may be acceptable because the bulk of the data is maintained and a
few missed pixels or milliseconds of video delay is no big deal. For text data, though, a lossy algorithm
usually isn't appropriate. An example of a lossy algorithm for compressing text would be to remove all
the vowels. Compressing the previous sentence by this scheme results in:

n xmpl f lssy lgrthm fr cmprssng txt wld b t rmv ll th vwls.

This shrinks the original 87 characters down to just 61 and requires only 70% of the original space. To
decompress, we could try matching the consonant patterns to English words with vowels inserted, but we
cannot reliably reconstruct the original in this manner. Is the compressed word “fr” an abbreviation for
the word “four” or the word “fir” or “far?” An intelligent reader can usually figure it out by context, but,
alas, a brainless computer can't be sure and would not be able to faithfully reproduce the original. For
files containing text, we usually want a lossless scheme so that there is no ambiguity when re-creating the
original meaning and intent.

An Overview

The standard ASCII character encoding uses the same amount of space (one byte or eight bits, where
each bit is either a 0 or a 1) to store each character. Common characters don’t get any special treatment;
they require the same 8 bits that are used for much rarer characters such as 'ü' or '¥'. A file of 1000
characters encoded using the ASCII scheme will take 1000 bytes (8000 bits); no more, no less, whether
it be a file of 1000 spaces to a file containing 4 instances each of 250 different characters. A fixed-length
encoding like ASCII is convenient because the boundaries between characters are easily determined and
the pattern used for each character is completely fixed (e.g. the character 'a' is always given by the pat-
tern 01100001).

In practice, it is not the case that all 256 characters in the ASCII set occur with equal frequency. In an
English text document, it might be the case that only 90 or so distinct characters are used at all (meaning
166 characters in the ASCII never even appear) and within those 90 there are likely to be significant
differences in the character counts. The Huffman encoding scheme takes advantage of the disparity be-
tween frequencies and uses less storage for the frequently occurring characters at the expense of having
to use more storage for each of the more rare characters. Huffman is an example of a variable-length en-

1 / 8

coding—some characters may only require 2 or 3 bits and other characters may require 7, 10, or 12 bits.
The savings from not having to use a full 8 bits for the most common characters makes up for having to
use more than 8 bits for the rare characters and the overall effect is that the file almost always requires
less space.

ASCII Encoding

The example we’re going to use throughout this handout is encoding the particular string "happy hip
hop" (don’t ask me what it means; I inherited it from previous CS106B instructors!). Using the standard
ASCII encoding, this 13-character string requires 13 × 8 = 104 bits total. The table below shows the rel-
evant subset of the standard ASCII table.

Character ASCII Value Bit Pattern
h 104 01101000

a 97 01100001

p 112 01110000

y 121 01111001

i 105 01101001

o 111 01101111

␣ 32 00100000

The string "happy hip hop" would be encoded in ASCII as 104 97 112 112 121 32 104 105 112 32
104 111 112. Although not easily readable by humans, it would be written as the following stream of
bits (each byte is boxed to show the boundaries):

01101000 01100001 01110000 01110000 01111001 00100000 01101000

01101001 01110000 00100000 01101000 01101111 01110000

To decode such a string (i.e. translate the binary encoding back to the original characters), we merely
need to break the encoded stream of bits up into 8-bit bytes, and then convert each byte using the fixed
ASCII encoding. The first 8 bits are 01101000, which is the pattern for number 104, and position 104 in
the ASCII set is assigned to lowercase 'h'. A file encoded in ASCII does not require any additional in-
formation to be decoded since the mapping from binary to characters is the same for all files and com-
puters.

A More Compact Encoding

The first thing you might notice about ASCII encoding is that using 8 bits per character can be exces-
sively generous. Although it allows for the possibility of representing 256 different characters, we only
have seven distinct characters in the phrase we’re trying to encode, and thus could distinguish among
these patterns with fewer bits. We could set up a special coding table just for this phrase using 3 bits for
each character. Creating such an encoding is trivial: we create a list of the unique characters, and then
go through and assign each a distinct encoded number from 0 to n–1. For example, here is one possible
3-bit encoding (of the 7! possible permutations):

2 / 8

Character Bit Pattern
h 000

a 001

p 010

y 011

i 100

o 101

␣ 110

Using this table, "happy hip hop" is encoded in binary as follows:

000 001 010 010 011 110 000 100 010 110 000 101 010

Using three bits per character, the encoded string requires 39 bits instead of the original 104 bits, com-
pressing to 38% of its original size.

However, to decode this binary representation, one would need to know the special mapping used, since
using 000 for 'h' is not standard practice and in fact, in this scheme, each compressed string uses its
own special-purpose mapping that is not necessarily like any other. Some sort of header or auxiliary file
would have to be attached or included with the encoded representation that provides the mapping infor-
mation. That header would take up some additional space that would cut into our compression savings.
For a large enough file, though, the savings from trimming down the per-character cost would likely out-
weigh the expense of the additional table storage.

A Variable-Length Encoding

What if we drop the requirement that all characters take up the same number of bits? By using fewer
bits to encode characters like 'p', 'h', and space that occur frequently and more to encode characters
like 'y' and 'o' that occur less frequently, we may be able to compress even further. We’ll later show
how we generated the table below, but for now just take our word for it that is represents an optimal
Huffman encoding for the string "happy hip hop":

Character Bit Pattern
h 01

a 000

p 10

y 1111

i 001

o 1110

␣ 110

Each character has a unique bit pattern encoding, but not all characters use the same number of bits. The
string "happy hip hop" encoded using the above variable-length code table is:

01 000 10 10 1111 110 01 001 10 110 01 1110 10

The encoded phrase requires a total of 34 bits, shaving a few more bits from the fixed-length version.
What is tricky about a variable-length code is that we no longer can easily determine the boundaries be-
tween characters in the encoded stream of bits when decoding. I boxed every other character’s bit pat-
tern above to help you visualize the encoding, but without this aid, you might wonder how you will know
whether the first character is encoded with the two bits 01 or the three bits 010 or perhaps just the first
bit 0? If you look at the encoding in the table above, you will see that only one of these options is possi-

3 / 8

ble. There is no character that encodes to the single bit 0 and no character that encodes to the sequence
010 or 0100 or 01000 for that matter. There is, however, a character that encodes to 01 and that is 'h'.
One of the important features of the table produced by Huffman coding is the prefix property: no charac-
ter’s encoding is a prefix of any other (i.e. if 'h' is encoded with 01 then no other character’s encoding
will start with 01 and no character is encoded to just 0). With this guarantee, there is no ambiguity in de-
termining where the character boundaries are. We start reading from the beginning, gathering bits in a
sequence until we find a match. That indicates the end of a character and we move on to decoding the
next character.

Like the special-purpose fixed-length encoding, a Huffman encoded file will need to provide a header
with the information about the table used so we will be able to decode the file. Each file’s table will be
unique since it is explicitly constructed to be optimal for that file's contents.

Encoding Seen as a Tree

One way to visualize any particular encoding is to diagram it as a binary tree. Each character is stored at
a leaf node. Any particular character encoding is obtained by tracing the path from the root to its node.
Each left-going edge represents a 0, each right-going edge a 1. For example, this tree diagrams the com-
pact fixed-length encoding we developed previously:

In the above tree, the encoding for 'y' can be determined by tracing the path from the root to the 'y'
node. Going left then right then right again represents a 011 encoding.

A similar, much larger tree could be constructed for the entire ASCII set, it would be 8 levels deep and
at the bottom would be 256 leaf nodes, one for each character. The node for the character 'a'
(01100001 in binary) would be at the end of the left-right-right-left-left-left-left-right path from the
root. We're starting to see why they're called binary trees!

Now, let’s diagram such a tree for the variable-length Huffman encoding we were using:

The path to 'h' is just left right or 01, the path to 'y' is right-right-right-right or 1111. Notice that the
prefix property of the Huffman encoding is visually represented by the fact that characters only occupy
leaf nodes (i.e. those nodes which are not a prefix of any further nodes).

The tree shown above for "happy hip hop" is, in fact, an optimal tree—there are no other tree encod-
ings by character that use fewer than 34 bits to encode this string. There are other trees that use exactly
34 bits; for example you can simply swap any sibling nodes in the above tree and get a different but
equally optimal encoding.

4 / 8

The Huffman tree doesn’t appear as balanced as the fixed-length encoding tree. You’ve heard in our dis-
cussion on binary search trees that an unbalanced tree is bad thing. However, when a tree represents a
character encoding, that lopsidedness is actually a good thing. The shorter paths represent those fre-
quently occurring characters that are being encoded with fewer bits and the longer paths are used for
more rare characters. Our plan is to shrink the total number of bits required by shortening the encoding
for some characters at the expense of lengthening others. If all characters occurred with equal fre-
quency, we would have a balanced tree where all paths were roughly equal. In such a situation we can't
achieve much compression since there are no real repetitions or patterns to be exploited.

Decoding Using the Tree

A particularly compelling reason to diagram an encoding as a tree is the ease with which it supports de-
coding. Let's use the fixed-length tree to decode the stream of bits 011101010010011. Start at the be-
ginning of the bits and at the root of the tree. The first bit is 0, so trace one step to the left, the next bit is
1, so follow right from there, the following bit is 1, so take another right. We have now landed at a leaf,
which indicates that we have just completed reading the bit pattern for a single character. Looking at the
leaf's label, we learn we just read a 'y'. Now we pick up where we left off in the bits and start tracing
again from the root. Tracing 101 leads us to 'i'. Continuing through the remaining bits and we decode
the string "yippy".

The same path-following strategy works equally well on the Huffman tree. Decoding the stream of bits
111100110101111 will first trace four steps down to the left to hit the 'y' leaf, then a left-left-right
path to the 'i' leaf and so on. Again the decoded string is "yippy". Even though the encoded charac-
ters don't start and end at evenly spaced boundaries in the Huffman-encoded bits, we have no trouble de-
termining where each character ends because we can detect when the path hits a leaf node in the encod-
ing tree.

Generating an Optimal Tree

The pertinent question now: how is that special tree constructed? We need an algorithm for constructing
the optimal tree giving a minimal per-character encoding for a particular file. The algorithm we will use
here was invented by David Huffman in 1952.

To begin generating the Huffman tree, each character gets a weight equal to the number of times it oc-
curs in the file. For example, in the "happy hip hop" example, the character 'p' has weight 4, 'h' has
weight 3, the space has weight 2, and the other characters have weight 1. Our first task is to calculate
these weights, which we can do with a simple pass through the file to get the frequency counts. For each
character, we create an unattached tree node containing the character value and its corresponding
weight. You can think of each node as a tree with just one entry. The idea is to combine all these sepa-
rate trees into an optimal tree by joining them from the bottom upwards. The general approach is as fol-
lows:

1. Create one singleton tree for each character, with weights equal to the character frequencies.

2. From the collection, pick out the two trees with the smallest weights and remove them. Combine
them into a new tree whose root has a weight equal to the sum of the weights of the two trees
and with the two trees as its left and right subtrees.

3. Add the new combined tree back into the collection.

4. Repeat steps 2 and 3 until there is only one tree left.

5. The remaining node is the root of the optimal encoding tree.

Sounds simple, doesn't it? Let's walk through building the optimal tree for our example string "happy
hip hop". We start with this collection of singletons, the weight of each node is labeled underneath:

5 / 8

We start by choosing the two smallest nodes. There are four nodes with the minimal weight of one, it
doesn't matter which two we pick. We choose 'o' and 'y' and combine them into a new tree whose
root is the sum of the weights chosen. We replace those two nodes with the combined tree. The nodes
remaining in the collection are shown in the light gray box at each stage.

Now we repeat that step, this time there is no choice for the minimal nodes, it must be 'a' and 'i'. We
take those out and combine them into a weight 2 tree. Note how the collection of nodes shrinks by one
each iteration (we remove two nodes and add a new one back in).

Again, we pull out the two smallest nodes and build a tree of weight 4:

Note when we build a combined node, it doesn’t represent a character like the leaf nodes do. These inte-
rior nodes are used along the paths that eventually lead to valid encodings, but the prefix itself does not
encode a character.

One more iteration combines the weight 3 and 2 trees into a combined tree of weight 5:

Combining the two 4s gets a tree of weight 8:

6 / 8

 And finally, we combine the last two to get our final tree. The root node of the final tree will always
have a weight equal to the number of characters in the input file.

Note that this tree is different from the tree on page 4, and has slightly different bit patterns, but both
trees are optimal and the total number of bits required to encode "happy hip hop" is the same for ei-
ther tree. When we have choices among equally weighted nodes (such as in the first step choosing
among the four characters with weight one) picking a different two will result in a different, but still op-
timal, encoding. Similarly when combining two subtrees, it is as equally valid to put one of the trees on
the left and the other on the right as it is to reverse them.

Remember that it is essential that you use the same tree to do both encoding and decoding of your files.
Since each Huffman tree creates a unique encoding of a particular file, you need to ensure that your de-
coding algorithm generates the exact same tree, so that you can get back the file.

Practical Considerations: Encoding the Tree

There is one last issue we have not discussed yet. Suppose that I want to compress a message and send it
to you. Using Huffman coding, I can convert the message into a string of bits and send it to you. How-
ever, you cannot decompress the message, because you don't have the encoding tree that I used to send
the message!

There are many ways to resolve this. We could agree on an encoding tree in advance, but this only works
if we already know the distribution of the letters in advance. This might be true if we were always com-
pressing normal English text, but in general is not possible to do.

A second option, and the option used in Assignment 8, is to prefix the bit sequence with a header con-
taining enough information to reconstruct the Huffman encoding tree. Details about this encoding
scheme are given in the assignment handout.

7 / 8

Greedy Algorithms

Huffman's algorithm is an example of a greedy algorithm. In general, greedy algorithms use small-
grained, or local minimal/maximal choices in attempt to result in a global minimum/maximum. At each
step, the algorithm makes the near choice that appears to lead toward the goal in the long-term. In Huff-
man's case, the insight for its strategy is that combining the two smallest nodes makes both of those
character encodings one bit longer (because of the added parent node above them) but given these are
the most rare characters, it is a better choice to assign them longer bit patterns than the more frequent
characters. The Huffman strategy does, in fact, lead to an overall optimal character encoding. Even
when a greedy strategy may not result in the overall best result, it still can be used to approximate when
the true optimal solution requires an exhaustive or expensive traversal. In a time or space-constrained
situation, we might be willing to accept the quick and easy-to-determine greedy solution as an approxi-
mation.

More to Explore

There are many, many other techniques based on Huffman encoding that you can use to get even better
data compression. Here are a few concepts to look up if you’re like to learn more about this:

• Adaptive coding. Huffman encoding works by looking at the entire piece of text to compress,
finding the global frequencies of each character, and then building a single encoding tree. How-
ever, in some files – especially raw image data – different regions of the file will likely have
wildly different frequencies of each letter. For example, in a picture of a yellow sunflower
against a bright blue sky, the parts of the file that store the sky data will have most of its bits ded-
icated to storing different shades of blue, and the parts of the file storing the sunflower will pri-
marily store bits used to hold shades of yellow. An adaptive coding algorithm is one that tries to
use information about the most-recently-seen parts of the file to determine what bit patterns to
output. Provided that the encoder and the decoder agree in advance on how to change the tree,
this technique can lead to huge reductions in file size. One technique that’s accessible using just
what we’ve learned in CS106B so far would be to use a splay tree data structure to do the com-
pression.

• Shannon entropy. Huffman encoding is based on the assumption that, when reading characters
from the file, each character is chosen randomly, with the likelihood of any character coming up
being directly proportional to the number of times that letter appears in the overall file. Under
this assumption, you can show that the theoretical limit of any compression algorithm for a file is
related to a quantity called the Shannon entropy of the distribution. The Shannon entropy is ac-
tually relatively easy to compute, and if you’re looking for a nifty “how does theory meet prac-
tice” exercise, take a look at the file sizes generated by Huffman encoding and see how they
compare against the theoretical lower bound.

8 / 8

	An Overview
	ASCII Encoding
	A More Compact Encoding
	A Variable-Length Encoding
	Encoding Seen as a Tree
	Decoding Using the Tree
	Generating an Optimal Tree
	Practical Considerations: Encoding the Tree
	Greedy Algorithms
	More to Explore

